随着风电场和高风险作业场所的迅速发展,安全隐患和风险防控逐渐成为企业关注的重点。特别是在风机设备和电气系统等关键设备上,设备老化、环境变化以及人为操作失误等因素都可能导致安全事故。
风电塔风险安全隐患排查:
(1)风机设备故障:定期对风机的叶片、轮毂、主轴、齿轮箱、发电机等关键部件进行检查和维护。例如,检查叶片是否有裂纹、腐蚀、结冰等现象,齿轮箱的油温、油位是否正常,发电机的绝缘性能是否良好等。利用先进的检测技术,如振动监测、温度监测、油液分析等,及时发现设备的潜在故障。
(2)电气系统隐患:对变电站的电气设备,如变压器、开关柜、断路器、电缆等进行全面检查。查看电缆是否有破损、过热现象,开关柜的操作机构是否灵活可靠,变压器的运行声音是否正常等。对电气系统的接地、防雷等保护装置进行检测,确保其有效性。
(3)塔架及基础问题:检查塔架的垂直度、螺栓的紧固程度、塔架的防腐情况等。对于塔架基础,要检查基础的沉降情况、混凝土的强度是否满足要求等。在地质条件复杂或地震多发地区,还需要加强对基础的抗震性能检测。
风电场位于陕西省XX县XX镇,场地地貌为黄土丘陵山地,地势 开阔、平缓,海拔 1400m~1650m 左右。场内建有一座110kV 升压站,以一回 6km 110kV 线路 T 接于 110kV 统鲁线,送至国网统万 330kV 升压站。风电场总装机容量50MW,场内集电线路共两回,各带 10 台风机,共安装 20 台风力发电机组,每台风机配有 1 台独立箱式变压器,风机叶轮直径为121m,轮毂高度 90m,2015 年 8 月 12 日首次并网运行。
根据《陆上风电场工程风电机组基础设计规范》(NB/T10311-2019)5.0.1条,单机容量均大于1.5MW,依据委托方提供的前两次沉降监测报告中提供的地基基础设计依据,地基基础设计级别为1级。根据《陆上风电场工程风电机组基础设计规范》(NB/T10311-2019)要求,应在风机运行期进行沉降监测。为了解风机是否沉降过大,并为业主单位提供准确可靠的建筑物动态沉降数据以便及时掌握变形情况,使各方能及时分析原因,采取措施,防止事故发生,确保风机安全运转。
随着风机容量越来越大,混凝土塔筒的应用逐渐广泛。混凝土塔筒已经有多年的应用经验,但并未大规模应用;应用数量较少、设计、供应链、安装等环节并未完全成熟,导致混凝土塔筒问题频发。常见混凝土缺陷缺陷,会对风机造成安全隐患,如管片压溃、倾斜、晃动,这些缺陷修复时间较长且成本很高。
混塔运行阶段,检测内容一般有:基础巡检、裂缝检查、检测、水平度检查、沉降检测、垂直度检测、钢绞线索力检测、预应力检测等。
预应力技术在现代工程结构中得到了广泛的应用,如桥梁、高层建筑、大跨度屋盖等。预应力体系的可靠性和安全性对于结构的整体性能至关重要。由于施工质量、材料老化、环境侵蚀等因素的影响,预应力体系可能会出现各种缺陷和损伤,从而降低结构的承载能力和耐久性。开展预应力体系的综合检测工作,及时发现和评估潜在的问题,对于保障结构的安全运行具有重要意义。
在实际的运行工况下,风机必须适应在各种风速下运行,塔架螺栓和焊缝受各方向的剪切力,极有可能造成焊缝的应力集中或螺栓的过度疲劳,致使风机使用寿命降低。阳江风力发电机塔筒检测,根据实际塔筒损坏情况抽检(每段筒节1/4区域),若检测发现与设计图纸不符或发现裂纹段,整环全检。为什么叫法兰盘-应用法兰(flange)又叫法兰盘或突缘盘。使管子与管子相互连接的零件,连接于管端。法兰上有孔眼,螺栓使两法兰紧连。法兰间用衬垫密封。法兰管件(flangedpipefittings)指带有法兰(突缘或接盘)的管件。它可由浇铸而成(图暂缺),也可由螺纹连接或焊接构成。法兰连接(flange,joint)由一对法兰、一个垫片及若干个螺栓螺母组成。垫片放在两法兰密封面之间,拧紧螺母后,垫片表面上的比压达到一定数值后产生变形,并填满密封面上凹凸不平处,使连接严密不漏。